Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2018  |  Volume : 31  |  Issue : 1  |  Page : 1-6

New mechanical ventilation strategies in acute respiratory distress syndrome

1 Department of Anesthesia and Intensive Care, Faculty of Medicine, Menofia University, Menofia, Egypt
2 Department of Anesthesia and Intensive Care, Faculty of Medicine, Benha University, Benha, Egypt

Correspondence Address:
Ahmed M Metwally
Abd-Elrahman Bab Allah Street, Benha
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1110-2098.234223

Rights and Permissions

Objective The purpose of this paper was to assess the new mechanical ventilation strategies in acute respiratory distress syndrome(ARDS). Data sources Data sources includes Medline databases(PubMed, Medscape, ScienceDirect, and EMF-Portal) and all materials available on the internet from 2003 to 2016. Study selection The search presented articles that met theinclusioncriteria involving the definition, pathophysiology, medical treatment, mechanical ventilation strategies, and prognosis of ARDS. Data extraction If the studies did not fulfill the inclusion criteria, they were excluded. Study quality assessment included whether ethical approval was gained, eligibility criteria specified, appropriate controls, adequate information, and defined assessment measures. Data synthesis Comparisons were made by different lines of treatment and new mechanical ventilation strategies of ARDS. Results The studies show that mechanical ventilation is the hallmark of ARDS treatment and a lifesaving intervention for severe hypoxemia that characterizes it. Despite it being used in this setting for several decades, our knowledge about its benefits and potential harm has evolved widely over time. Early ventilation strategies involved volume-controlled ventilation with tidal volume(Vt) of 10–15ml/kg to achieve “normal” arterial blood gases. However, ventilation itself can cause lung injury. Alandmark trial conducted by the ARDS Network compared conventional Vtof 12ml/kg with low Vtof 6ml/kg and permissive hypercapnia. A9% absolute mortality reduction was found in the low Vtventilation group along with reduced pulmonary and circulating inflammatory cytokines. The aim of positive end-expiratory pressures(PEEP) in ARDS is to recruit(or maintain recruitment) ofatelectaticor flooded lung. Initial studies looking at the effects of PEEP described adverse hemodynamic effects at high levels, leading to a reduction in cardiac output and oxygen delivery. Recruitment maneuvers are used to open areas of atelectasis improving lung compliance and oxygenation. The prognosis of ARDS has improved over the past 20years. Overall, 60–70% of patients survive. Patients with poor prognostic factors include those older than 65years and those with sepsis as the underlying cause. The adverse effect of age may be related to underlying health status. Conclusion We found that mechanical ventilation strategies that use lower end-inspiratory(plateau) airway pressures, lower tidal volumes(Vt), and higher PEEPs can improve survival in patients with ARDS, but the relative importance of each of these components is uncertain. The ARDS Network trial showed that a ventilation strategy with a lower tidal volume(4–8ml/kg of predicted body weight) was associated with lower mortality and shorter length of mechanical ventilation. This trial used a combination of volume and pressure limitation.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded396    
    Comments [Add]    

Recommend this journal