Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2014  |  Volume : 27  |  Issue : 1  |  Page : 136-144

Assessment of right ventricular response to exercise using vector velocity imaging in hypertrophic cardiomyopathy

Department of Cardiology, Faculty of Medicine, Menoufiya University, Menoufiya, Egypt

Correspondence Address:
Maged M. Khalifa
BSc, Karram Towers, Mahmoudia Canal Street, Moharram Bek, Alexandria
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1110-2098.132787

Rights and Permissions

Objective The objective of this study was to assess right ventricular (RV) deformation response to exercise in hypertrophic cardiomyopathy (HCM) and its relationship with left ventricular (LV) function using vector velocity imaging (VVI). Background RV adaptive mechanisms to exercise in HCM are poorly understood. VVI is achieved through the combination of speckle tracking, mitral annulus motion, tissue-blood border detection, and the periodicity of the cardiac cycle using R-R intervals. It can measure different parameters of deformation and dyssynchrony of the regional myocardium. Patients and methods Resting and exercise echocardiography was performed in 40 HCM patients and 33 healthy control individuals. Longitudinal peak systolic strain (εsys ) and strain rate (SR sys , SR e , SR a ) of RV segments from the apical four-chamber view were used to evaluate RV functional reserve (stress-rest/rest). Similar parameters were quantified in LV wall segments. Intra-V dyssynchrony was defined as SD of TTP (measured from regional strain curves for each segment as time from the beginning of the Q wave to time to peak åsys ). Results In HCM and immediately after exertion, RV åsys and SR sys were significantly lower and RV dyssynchrony was greater compared with those in the control participants. A significant correlation was evident between exercise capacity and RV TTP-SD and RV SR sys . RV functional systolic reserve showed a direct relationship with LV systolic functional reserve. However, using multivariate regression analysis, LV SR sys , and LV, TTP-SD is the only predictor of exercise capacity, whereas the RV functional reserve did not alter the outcome. Exercise stress-induced RV dysfunction in HCM is associated with exercise intolerance and strongly related to LV deformation abnormalities as evaluated by VVI. Conclusion Although exercise-induced RV dysfunction assessed during stress was statistically associated with exercise capacity, it was found that the LV systolic SR and systolic dyssynchrony at rest are major determinants of exercise tolerance in HCM.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded108    
    Comments [Add]    

Recommend this journal